Signals & Systems for Speech & Hearing

Week V

Signals through Systems

Crucial ideas

- *Any* signal can be constructed as a sum of sine waves
- In a *linear time-invariant* (LTI) system, the response to a sinusoid is the same whether it is on its own, or as one component of a complex signal
 - No interaction of components
- An LTI system *never* introduces frequency components not present in the input
 - a sinusoidal input gives a sinusoidal output of the same frequency
- Hence, the output is the *sum* of the individual sinusoidal responses to each individual sinusoidal component of the input

Six steps to determining system output to any particular input

- 1. Obtain the system's amplitude response
- 2. Obtain the system's phase response
- Analyse the waveform to obtain its spectrum (amplitude and phase)
- 4. Calculate the output amplitude of each component sinusoid in the input spectrum
- 5. Calculate the output phase of each sinusoid
- 6. Sum the output component sinusoids

3

2

Response to harmonic 1 (100 Hz)

Input amplitude 1 V	Response gain 1	Output amplitude ?
Input phase	Phase shift of response 0	Output phase ?
-90		

Graph of signal - system output for harmonic 1

11

Response to harmonic 3 (300 Hz)

Input amplitude 1/3 V	Response gain 0	Output amplitude ?
Input phase	Phase shift of response 0	Output phase ?
-90		

Response to whole signal

Linear vs. logarithmic *frequency* scales

Logarithmic amplitude scales matter for calculations. Logarithmic frequency scales are a matter of convenience.

Using an aperiodic input (white noise): A *continuous* spectrum

More complex examples

